...
'MM/dd/yyyy'
'MM-dd-yyyy'
'MM.dd.yyyy'
'dd/MM/yyyy'
'dd-MM-yyyy'
'dd.MM.yyyy'
'MM/dd/yyyy HH:mm'
'MM-dd-yyyy HH:mm'
'MM.dd.yyyy HH:mm'
'dd/MM/yyyy HH:mm'
'dd-MM-yyyy HH:mm'
'dd.MM.yyyy HH:mm'
'MM/dd/yyyy HH:mm:ss'
'MM-dd-yyyy HH:mm:ss'
'MM.dd.yyyy HH:mm:ss'
'dd/MM/yyyy HH:mm:ss'
'dd-MM-yyyy HH:mm:ss'
'dd.MM.yyyy HH:mm:ss'
'yyyy-MM-dd'
'yyyy-MM-dd HH:mm'
'yyyy-MM-dd HH:mm:ss'
'yyyy-MM-ddTHH:mm:ss.SSSZ'
'dd-MMM-yyyy'
'dd-MMM-yyyy HH:mm'
'dd-MMM-yyyy HH:mm:ss'
'Epoch timestamp in milliseconds-13 digits' (since v1.2.0)
'Epoch timestamp in microseconds-16 digits' (since v1.2.0)
'Epoch timestamp in seconds-10 digits' (since v1.2.0)
These formats provide users with flexibility and control over how date and datetime strings are interpreted and converted within the application.
...
Once the pipeline runs, you will see using the TO_DATE expression string has converted the string to a date object based on the chose format
Note:
For files that have meta data like Excel, if we set the column as date like below
Then EazyDI will be able to infer the column as date or date time and even if we use the TO_DATE function, it will skip it as it only transforms columns which are of string types